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ABSTRACT 

Two methods of solving the balance equation  are outlined. Both  methods  have been used successfully on a daily 
operational basis at the  Joint Numerical  Weather  Prediction Unit for a period of more than a year.  Solutions were 
on the  operational  grid of 30 x 34 points  spaced at 381-km. intervals. 

1. INTRODUCTION 
The  Joint Numerical Weather Prediction Unit  has been 

solving the balance equation on a daily operational basis 
for over a year on a grid covering more than 100,000,000 
k m . 2  of the earth's surface (Shuman [I]). With  this 
record of operations, it may safely be concluded that  the 
methods used  will never fail to yield a solution nor behave 
badly for any meteorological data.  In view of diaculties 
anticipated  in the  literature concerning the solution of 
the balance equation on grids comparable in size to  that 
used by  the  Unit it is felt that a record of our methods 
will be of some interest. 

2. THE  BALANCE  EQUATION IN POLAR 
STEREOGRAPHIC  SPACE 

Perhaps the most common form of the balance equation 
is, in tangent plane coordinates, 

where f is the Coriolis parameter, $ is the  stream function, 
g is acceleration of gravity,  and z is the  'height of an 

diction used by the  Joint  Numerical Weather Prediction Unit. 
*This is  the first of a series of three  articles on the  subject of numerical  methods of pre- 

isobaric surface. The usual transformation of equation 
(1) onto the polar stereographic projection is 

where m is the map scale factor, 

p is radial distance on the projection from the pole, ps is 
radial  distance on the projection from  pole to  equator, 
and r is the radius of the earth. 

Equation (l), being in tangent plane coordinates, is 
not a rigorous expression of the dynamic laws, nor is 
equation ( 2 )  a rigorous transformation of equation (1) 
into polar stereographic space.  Because serious questions 
have arisen in the  past concerning  possible  inconsistencies 
between the common forms of the balance equation and 
the  true physical laws the forms are  meant to express, 
the balance equation has been derived from the equations 
of motion in spherical coordinates, and transformed 
rigorously into Cartesian coordinates on the polar stereo- 
graphic projection. The derivation and transformation 
being lengthy, they wi l l  not  be reproduced here  for lack 
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of space. The resulting form is 

where x and y are measured on the projection from the 
pole. The underlined terms, which are  not implicit in 
the common form (2), are small. With  the view to 
assessing them for integrated consistent effects, the balance 
equation was solved for one case with  them included. 
Their effects proved trivial, so they will be ignored. We 
have then 

Equation ( 3 )  is a simple rearrangement of equation (2). 
For the purposes of the following  discussion, it will be 
convenient to  retain  the balance equation  in the special 
form (3). The boundary condition presently used is that 
suggested by Bolin [2]: 

w 9 
$I! dz 

”_ ”- 

as-f as $Ids 
where s is distance measured counterclockwise along the 
boundary. 

3. THE INITIAL PROGRAM FOR AUTOMATIC 
COMPUTING MACHINERY 

The first method used on an operational basis was out- 
lined in its essentials by  the  author [3 ] .  I t  is a direct ap- 
plication of relaxation techniques [4] to  the problem, and is 
similar to the method used by Bushby and Huckle [5] in 
their solutions of a modified balance equation. 

One may write the finite-difference transformation of 
equation (3)  in a  rectangular mesh, 

where q is absolute vorticity scaled so that  the coefficient 
of the  central value of # is - 1 ,  and Dl2,  Dz2, L, and Z are 
appropriately scaled forms of the  other  terms in equation 
(3) in  their order of appearance. It is to be noted that + at the  central  point is implicit only in  the first term. 
I t  can be shown by variational calculus (e.  g., Shuman 
[3]) that  the differential equation (1) is elliptic if 

1 
s ( z E z + ~ w ) + ~  f”#z;fZ-#,f,>o 

The corresponding condition for the finite difference 
equation (4) is probably 

D,2+Dz2”L+Z>0 (5) 

since no difficulty in  treating it as  a boundary-value 
problem has been encountered so long as  the condition (5) 
is satisfied. However, since for meteorological  data 
generally, 

IZI>>ILl 

and since Z is almost exclusively positive, while Dle and 
D2’ are positive definite, we first impose on the Z-field  the 
condition 

220 (6) 

by  a technique that does not change its mean value nor, 
in practice, its large features significantly. The field of 
Z is scanned with  a  test for negative values. When a 
negative value of 2 is encountered the values at  the sur- 
rounding nearest four points  are reduced by % of the 
magnitude of Z at the central  point,  and  the value of Z 
at  the central  point is increased to zero. Boundary values 
are excepted from change. A few scans are required 
to complete this operation. 

In a numerical experiment involving some  dozen cases, 
Mr. L. P. Carstensen of the development staff of our 
Unit  has found that imposing the condition (6) implies 
only trivial changes in 500-mb. heights over areas of  good 
dat.a coverage, although changes of as much as 50 feet 
may be implied over areas of sparse data. It appears 
that  the  latter  are due to analysis errors, due in turn 
to insufficient data. 

Equation (4) may be written 

~Y-[(D1Y)2+(DZY)2-LV+Z]~=RV (7) 

where v is the scan count in the relaxation process, and 
R is a measure of the error of the current approximation. 
The Liebmann-type  iteration  is used, so that quantities 
designated by  the superscript v have only a brief  existence. 
Specifically, the superscript v denotes a value at  a point 
during the v-th scan after  computation  has been  completed 
a t  the preceding point, but before computation has 
begun at  the point in question. We  will similarly write 

~P+1-[(D1V)2+ (DzY)2-Ly+Z]%= ”XRY (8) 

Again, the  quantity qV+l has only a brief  existence. I t  is 
the value of q during the v-th scan after computation has 
been completed a t  the point  in question, but before 
computation at  the succeeding point  has begun. Thus, 

p+1- V” * - (7”+l”7”) (9) 

Equations (7), (8 ) ,  and (9) may  be combined. 

p+”J.’=(l+X) { ~y~[(D~u)2+(D~y)2-LV+Z]4fij ‘ (IO) 

The  quantity X is  the overrelaxation factor. It is to be 
noted that one cannot overrelax a residual based on 
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equation (4) as  it stands, for with the  little control one 
has over such an implied residual, and  without 012, D22, L, 
or Z being bounded away from zero, one will surely 
encounter during the process imaginary values of q .  On 
the  other  hand,  the method of overrelaxation as indicated 
by equation (10) leads to no  difficulty. 

It has been found that  the condition (6) is not always 
sufficient to satisfy the "elliptic" condition (5). At points 
where the  other  terms of the expression (5) are small, 
sometimes L is sufficiently positive to violate the condi- 
tion. This  has been handled by substituting zero for the 
expression  (5) where the condition is violated, and 
keeping a count of such points  during  the scan. When 
convergence is otherwise indicated in four successive scans 
during which the condition (5) is violated at  some points, 
the program proceeds in a similar fashion as before, but 
if,  where negative, the absolute value of the expression (5) 
is' smaller than a small number  (an increment of 2 is 
used, corresponding to  0.1j2) it is ignored. The program 
has never failed to converge under these circumstances. 
The number of points involved has always been a t  least 
two orders of magnitude less than  the  total number 
(1,020) of points  in the grid. 

A disadvantage, from the viewpoint of time required, 
of the system (10) over solutions of linear equations is 
obvious, for it indicates a square root must be taken. 
The Newton iteration is used in our machine program. 
In terms of scan count, however, the system converges as 
fast as linear systems, as can be shown by solution of 
equation (3) treated as a Poisson equation  in z. The total 
scan count is about the same whether one  solves the equa- 
tion for z with fg"y5 as the f i s t  guess, or whether one 
solves the equation for $ with f"gz as the first guess. 
Total scan counts with such a first guess for our 30 x 34 
grid of 381-km.  mesh length is 100 to 125 scans. Our 
convergence criterion is 

jg - ' ( lp+"lp)  5 2 foot 

where 7 is the Coriolis parameter at  45'. The program 
described above runs  from 40 to 50 minutes on the Unit's 
IBM 701, including all input-output operations and  other 
overhead. 

4. A  FAST  METHOD 

The method described in this section is, except in certain 
minor details, identical to a method arrived at inde- 
pendently by  Miyakoda [6]. At  the first writing of this 
paper, the  author was unaware of Miyakoda's work. 

The foregoing program was  used on a daily operational 
basis from April  20,  1956 to  January 30, 1957.  On 
January 31, 1957  we instituted  an operational code  which 
cut the  total  running time to 25 minutes. More recently, 
we began using 12-hr. barotropic predictions of # as a 
first  guess,  which reduces running  time to 18 minutes. 
In these later runs the relaxation itself is done in slightly 
more than 10 minutes, the rest of the time being  occupied 
with input-output operations and other overhead, includ- 
ing checking and recovery procedures. In  the new fast 

program, the square  root indicated in equation .(lo) is 
taken only every 10 scans or so, it being  otherwise held 
constant. We call this process  ('cyclic", a ''cycle" con- 
sisting of the computations between the computation of 
the square root.2 This procedure reduces the fundamental 
relaxation computation to  the  fastest possible; i. e., to 
that of a Poisson equation. The process may be stated 
symbolically, 

(Ip+"Ip)"+'= ( l + X )  { q~~c+"[(Dlfl)2+ (D2c)2-Z+J+2p] 

(11) 

where is the cycle count. Instead of fixing the number 
of scans per cycle to a constant figure,  which we  now 
think would  be a better procedure, we vary  the conver- 
gence criterion, beginning with 64 ft. for the first cycle, and 
reduce it by one-half for each succeeding cycle until it 
reaches the value, j4 ft., and  then hold it constant. A 
cycle then consists of relaxation of a Poisson equation 
extending to indicated convergence. Ten  to fift.een  cycles 
are normally required for convergence, which is indicated 
by four successive  cycles of one scan each. At  the end, 
we have been requiring two scans indicating convergence 
with  the older slower program described previously. 

There  have been occasional  cases in which the new 
program has failed to converge. It had reached a near- 
perfect oscillation in which 

q"+l- [ (D1fl)Z+ (D2")2""L"+qn=0 

q u + 2 - [ ( ~ l u + l ) 2 +  (~2u+1)2-Lu+1-q%=o 

This has been handled by  halting  the cyclic  process after 
32 cycles, and proceeding to convergence with  the older 
program, which at  that stage  has  taken less than 15 scans 
to accomplish.  We have never encountered a case in 
which the new fast program diverges from the solution. 
The oscillation has been associated with small-scale 
irregularities in  the analyses of z. When the field of z is 
treated to remove components with wavelengths of less 
than five grid increments, the oscillation does not occur. 
This is an empirically indicated way of avoiding oscilla- 
tions in the process (1 1). It is thought that a better way 
would  be to begin each cycle with a first guess  which is a 
weighted average of the '(solutions" from the previous  two 
cycles. In  this average one should weight the "solution" 
from the immediately greceding cycle very heavily, 
otherwise the  rate of convergence would  obviously  be 
affected adversely. 

5. REMARKS ON OTHER METHODS 

One can linearize t,he balance equation before applying 
relaxation techniques, for example, as Bolin [2] has done. 

equation in the form (I). He held constant during  each cycle 8U terms except the first 
2 The cyclic concept is due to Mr. L. P. Carstensen, who  first applied it to the balance 

in equation (1). Some  solutions  were  successlully  obtained in this manner,  but in some 
cases divergence  from the solution was manifst. 0. ' A ~ o n  later  showed on a  theoretl- 
cal  basis the conditions  under  which  such  application of the cyclic procsdure  would 
diverge  from the solution. Bushby and  Huckle 151 reported  failure for a similar scheme. 
'Amsson's work has been submitted for publication. 
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His method is precisely equivalent  to performing a single 
Newton iteration  on the radical in  equation (10) at  each 
point during each scan. He  sets X=O. He  has success- 
fully  solved the balance equation on a 500-point grid in 
this manner. As he  has indicated his method as presented 
will fail for larger grids with  strict convergence criteria 
unless  be can arrive at a much better first guess of # than 
J” g z.  The reason for failure will be that  as  the grid be- 
comes larger, the heights become a poorer estimate of the 
7 g“ +field, and overrelaxation will  become necessary to 
keep running time down to acceptable limits. We have 
found that on a 19 x 29-point grid with a mesh length of 
304.8 km., the balance equation  can be solved in a reason- 
able time without overrelaxation, but on our operational 
30 x 34-point grid with mesh length 381 km. it is not 
feasible to  run  the code to convergence from a first guess 
of 7“ g z without overrelaxation. 

Due to  the monotonic approach of the Newton iteration 
to the  square  root, Bolin’s system,  with X=O, consistently 
under-relaxes.  One  could introduce overrelaxation into 
his system, but again due to  the monotonic approach of 
the Newton iteration to the square  root, such overrelaxa- 
tion would not be overrelaxation in  the usual sense. I t  
is conceivable that one could correct this deficiency by 
adjusting the overrelaxation factor  by empirical or statis- 
tical techniques, but here one is limited by  the  fact  that if 
X were to approach unity in his scheme, the Newton 
iteration itself  would  become divergent. An important 
test  in this respect, is upon a  trivial finite-difference  field 
of one internal  point. I t  is inconceivable that a system 
failing this simple test would  succeed generally when 
applied to large fields.a 

As mentioned previously, Bushby  and Huckle [5] have 
successfully  solved a modified balance equation, using a 
method essentially like t,hat of our older program. Their 
grid  was quite small, 256 points. I t  is in order to  remark 
that they defined the balanced wind components as 
divergent, thus, 

u= -j-’h 

2, = + j ” + Z  

Bushby  and HucMe largely ret.ain the geostrophic diver- 
gence, so will produce no significant improvement in 
predictions over geostrophic wind  fields. 

In  order to avoid explicitly the  square  root computa- 
tion,  Kasahara [7] has proposed the following  cyclic  pro- 
cedure. He first sets down 

(V2lp+’+- fy -  ( D I y -  (D292+L~--Z=O 

where u is the cycle count. He then linearizes this equa- 
tion by expanding the first term,  thus, 

[V2(P+1-+)]2+2 (v”c+f)v2 (P+”P) + ( V Z P + f ) 2 ”  

( D l y -  (D2c)2+Lu--Z=0 

and neglecting the  first  term  in the expansion. Fixing 
those terms superscribed by u, he solves the resulting 
Poisson equation in yF+l-P. He proceeds t,hus for 
several cycles t,o convergence. It is not clear that the 
division necessary t,o form the forcing functions for  the 
Poisson equations will remain bounded, but if this were 
the case, and if the method  were to prove otherwise uni- 
versally convergent for meteorological data,  it would 
indeed be of considerable interest. 

ACKNOWLEDGMENTS 

The  author expresses his gratitude for the excellent 
services performed by  the following former or present 
members of our staff of mathematicians: Lt. Cmdr. 
Albert Stickles, Mr.  Stanley  Herman,  Mrs. Dorothy 
Hoover, Mrs. Miriam Bernhardt,  and  Mr.  Otha Fuller. 

REFERENCES 

1. F. G. Shuman,  “Predictive Consequences of Certain Physical 
Inconsistencies in  the Geostrophic  Barotropic Model,” Monthly 
Weather  Review, vol. 85 No. 7, July 1957, pp. 229-234. 

2. B. Bolin, “An Improved  Barotropic Model and Some Aspects 
of Using the Balance Equation for  Three-Dimensional Flow,” 
Tellus, vol. 8, No. 1, Feb. 1956, pp. 61-75. 

3. F. G. Shuman, “A Method for Solving the Balance Equation,” 
Technical  Memorandum No. 6, Joint Numerical Weather 
Prediction Unit, 1955, 12 pp. 

4. R. V. Southwell, Relaxation  Methods in Theoretical  Physics, 

and derived a equation modified by the 5. F. H. Bushby and V. M. Huckle,  ‘&The Use of a Stream Function 
Oxford, Clarendon  Press, 1946, 248 pp. 

of terms which inevitably arose from the space variation in a Two-Parameter Model of the Atmosphere,” Quarterly 
of j .  The  author  has since pointed out elsewhere (Shuman Journal of the  Royal  Meteorological  Society, vol. 82, No. 354, 
[l]) that conventional use of the geostrophic approxima- Oct. 1956 pp. 409-418. 
tion implies serious physical inconsistencies due  to gee- 6. K. Miyakoda, “On a Method of Solving the Balance Equation,” 

strophic divergence. The “balanced” wind  fields of Journal of the  Meteorological  Society of J a p  vol. 34, No. 6, 
Dec. 1956 pp. 364367. Reprinted  in Vortex%, June 1952 

8 O.‘Arnasoninapapersoon tobepublished, hasdevelopedamethod byalinearization 7. A. Kasahara, “A Method  for Solving the Balance q‘iratiUn wlt 
technique  which  does not suffer from an implied  monotonic  approach to the  square root. the  Relative Vorticitv as a Carrvinc  Parameter.” Technical 
His technique, with a slower scan than the fast method outlined in this article,  requires 
fewer scans. From a flrst  guess of a quality similar to a 12hr. prediction, his method Report No. 3 to  the “U. S. Weather”Bureau  (Cdntract Cwb 
competes  successfully with the  fast  method  described in section 4. Perhaps more  impor- 9016), Department of Meteorology, University of Chicago, 
tant in terms of lasting  interest, he has proven  convergence for his method. 1957, 12 pp. 


